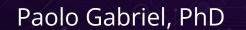


2025-06-26

A Deep Look at Continuous Patient Monitoring



Be Present for Every Patient at Every Moment

Click to expand

About me

Paolo Gabriel

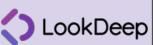
[PHL, JPN, USA-(OH,CA)]

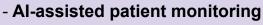
UC San Diego, 2013 - 2019 - Ph.D. ECE - Medical Devices & Systems

- Translational Neuroengineering Lab

LookDeep Health, 2019 -

- Sr. Computer Vision Engineer





Recording units

Continuous patient monitoring with AI: real-time analysis of video in hospital care settings (Front. Imaging, 09 March 2025)

Agenda

- 1. Continuous patient monitoring
- 2. CV development for hospital settings
- 3. Lessons learned
- 4. Discussion

Disclaimer: This is a talk about **simple and transparent tools**, on top of a **robust system**

The need for patient monitoring

If you are staying in a hospital...

- Most of the time, you are alone and unattended
- Your status is checked on a schedule
- Calling for assistance takes effort

~out of scope~

Even simple information can be useful

- Where is the patient, what state are they in?
- Is there staff in the room?
- What's the diagnosis?

~out of scope~

Before applying novel ML, can you demonstrate the basics?

-

Patient monitoring with computer vision

Why use **computer vision**?

- Direct observation is limited, annotation is time consuming
- Analyze video over extended periods with computer vision
 - Existing work ~ (Chen et al., 2018), (Wang et al., 2018), (Peterson et al., 2021)
- **Baseline** architecture and performance: (Gabriel et al., 2025)
 - RGB @ 1fps on rknn NPU
 - Yolo v4 object detection + Farneback dense optical flow
 - Almost 3 years of recording at 11 hospitals

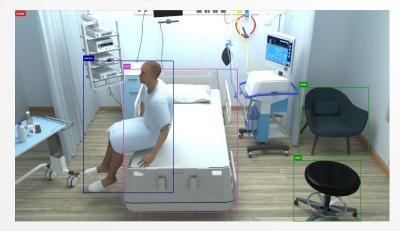
Benchmarks for AI-driven patient monitoring, data-driven insights into **patient behavior** and **interactions**.

Recording unit

Real hospital settings

Goal: directly observe patients in the noisy clinical environment.

You want clean setup...



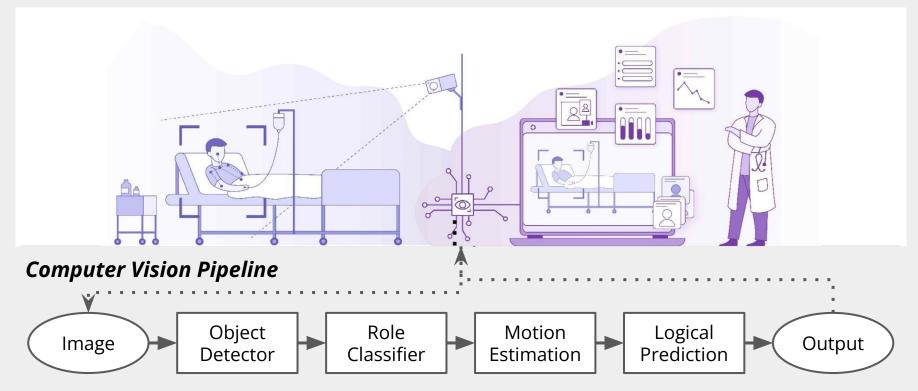
You get something "wild" instead

> We built and validated a computer vision platform for real hospital settings!

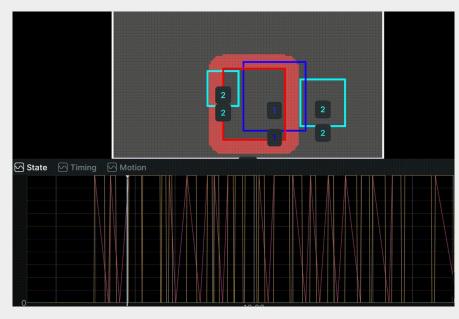
Examples of our **domain** (blurred for privacy)

Camera placement varies

How we monitor each patient 24/7



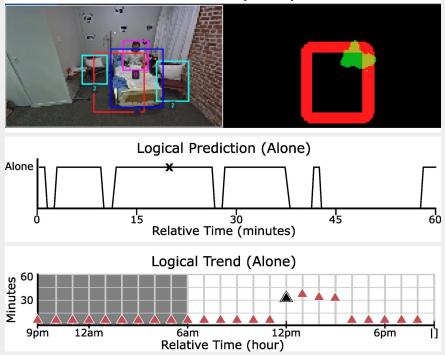
Real-time pipeline



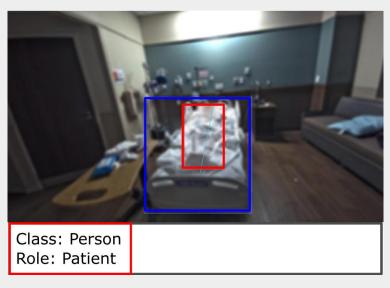
Objects, masks, motion, state changes

Time granularities (s, m, h)

AI Inference (Frame)



Labeled image



40K+ frames at time of publication

Data lake (one of several)

Labeled metadata (e.g. "bad image", "truncated") used to curate training data

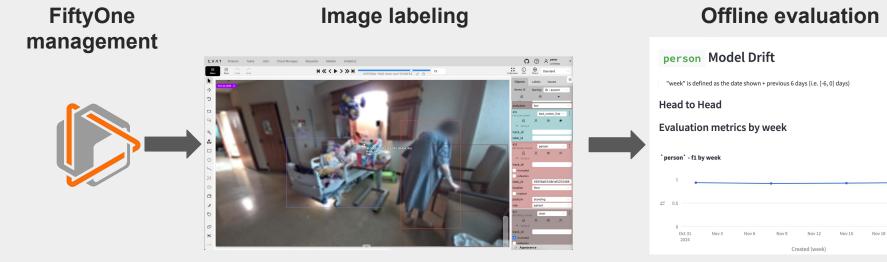
Data labeling for ongoing performance management

How we use our labels

30K hours per month (100K+ / mo by 2025)

Test set - every 4th week

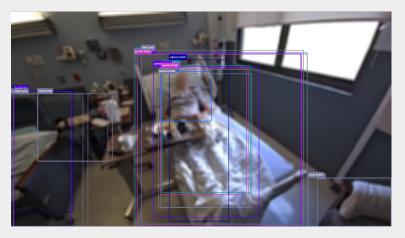
Compare **old vs new** models



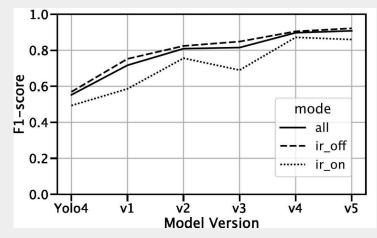
All labeling is blurred (final image is face blurred)

Frame-level analysis - object detection, classification

Al Inference



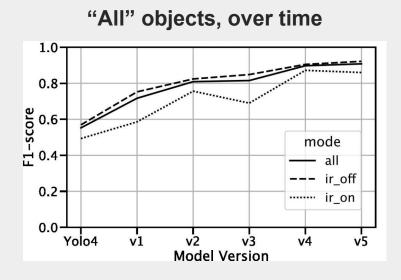
"All" objects, over time



Detection and classification metrics

Model version	Object detection (person)		Role classification	"Patient alone" classification
	Precision	F1	(patient F1)	(F1)
YOLOv4 (baseline)	0.98	0.41	n/a	0.28
Model v5 (2024-Q2)	0.96	0.91	0.98	0.92

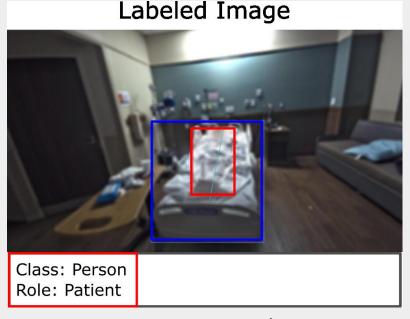
Re-training models with more data, use most recent test set



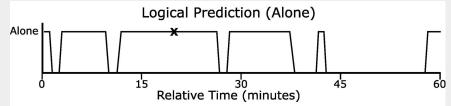
Model version	Fine-tuning data size	
YOLOv4 (baseline)	n/a	
Model v1 (2022 Q1)	+700	
Model v2 (2023 Q2)	+2,474	
Model v3 (2023 Q3)	+10,133	
Model v4 (2024 Q1)	+28,914	
Model v5 (2024 Q2)	+34,239	

Improvement with more targeted data (e.g. patient standing at night)

Time segment labels

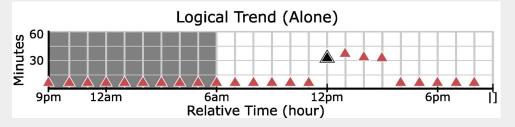


Time segment predictions



- Evaluate **consistency** of signal over time
- Separate logical algorithms from core CV
- Requires video

Time segment predictions

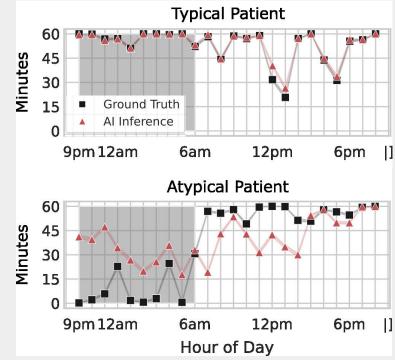


average logistic regression/manual accuracy

- 0.82 ± 0.15 across all times

Model v3, 10 patients

Compare against GT trends

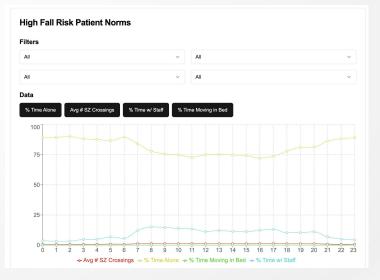


Manuscript contributions

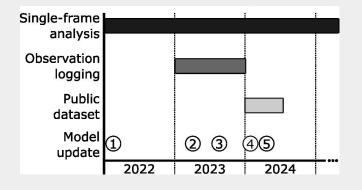
Continuous patient monitoring with AI: real-time analysis of video in hospital care settings (Front. Imaging, 09 March 2025)

- Al-driven patient monitoring system
- Multi-year data collection
- Model training and evaluation process
 - Object detection, role/state classification
 - "Patient alone" trends
- Anonymized dataset of hourly trends ->

Public dataset

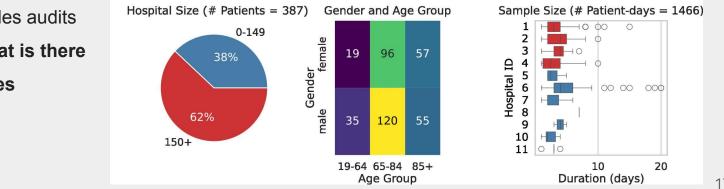


Datasets timeline



- More data over time is a **good thing**
- Have a **consistent** test set (ours is now 10k+)
- Have a tight, continuous integration

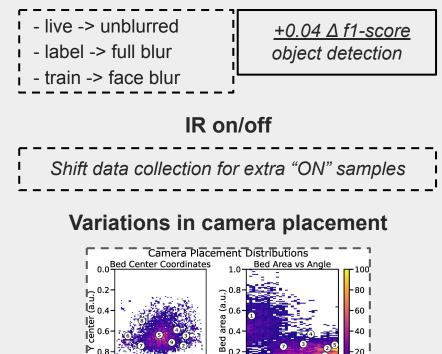
Demographic information



- Metadata enables audits
- Understand what is there
- Anticipate **biases**

Lesson learned - generalizing across camera conditions

Face-blurred vs raw images

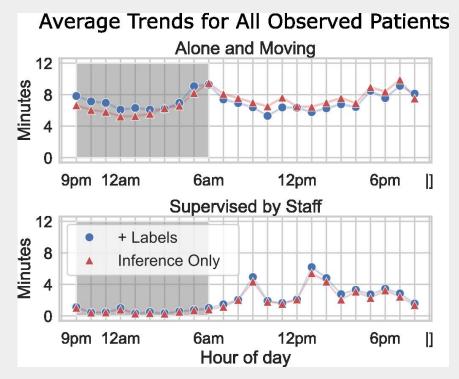


Bed angle (degrees)

0.25 0.50 0.75 1.00

X center (a.u.)

Downstream stability



average error of <u>1–2 min per hour</u>

Lessons learned - our stack of AI data tools

FiftyOne - image curation and analysis

CVAT - labeling

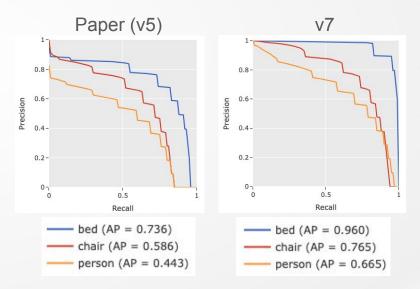
Rerun - physical data viewer

Custom tools - 3d render

Summary

- Applied computer vision, rigorous eval
- **11 hospitals**, over **300 high-risk fall patients**, more than **1,000 days** of inference
- **Open access** to "hour-level" features from 2024
- Lessons learned:
 - tag, tag, tag
 - expect imperfect conditions
 - adopt existing AI tools

We're getting better...



Co-authors: Peter Rehani, Tyler Troy, Tiffany Wyatt, Michael Choma, Narinder Singh

Co-workers: Guram Kajaia, James Eitzman, Bill Mers, Mike O'Brien, Jan Marti, Laura Urbisci, Tom Hata

Reviewers: Aashish P., Jacob H., Kenny C., Tejaswy P., Quirine vE., Hina S., Nazreen P.M., Sandeep K.M.

Al-agent: GPT-4-turbo for refining manuscript text, to improve clarity and organization of the research

Study participants:

> The data used in this retrospective study was collected from patients admitted to one of eleven hospital partners across three different states in the USA. Patients provided written informed consent for monitoring as part of their standard inpatient care. To ensure patient privacy, all visual data was blurred and no identifiable information is presented. Thank you for participating.

Thank you!

