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1. Continuous patient monitoring

2. CV development for hospital settings

3. Lessons learned

4. Discussion

Continuous patient monitoring with AI: 
real-time analysis of video 

in hospital care settings 
(Front. Imaging, 09 March 2025)
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Agenda

Disclaimer:
This is a talk about simple and transparent tools, on top of a robust system



The need for patient monitoring
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If you are staying in a hospital…
- Most of the time, you are alone and unattended
- Your status is checked on a schedule
- Calling for assistance takes effort

Even simple information can be useful
- Where is the patient, what state are they in?
- Is there staff in the room?
- What’s the diagnosis?

Before applying novel ML, can you demonstrate the basics?

~out of scope~

~out of scope~



Patient monitoring with computer vision

● Direct observation is limited, annotation is time consuming  

● Analyze video over extended periods with computer vision
○ Existing work ~ (Chen et al., 2018), (Wang et al., 2018), (Peterson et al., 2021)

● Baseline architecture and performance: (Gabriel et al., 2025)
○ RGB @ 1fps on rknn NPU
○ Yolo v4 object detection + Farneback dense optical flow
○ Almost 3 years of recording at 11 hospitals
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Benchmarks for AI-driven patient monitoring, 
data-driven insights into patient behavior and 
interactions.

Why use computer vision?

https://www.frontiersin.org/journals/imaging/articles/10.3389/fimag.2025.1547166/full#B9
https://www.frontiersin.org/journals/imaging/articles/10.3389/fimag.2025.1547166/full


Real hospital settings

Goal: directly observe patients in the noisy clinical environment.
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You want clean setup… You get something “wild” instead

> We built and validated a computer vision platform for real hospital settings!



Examples of our domain (blurred for privacy)
Camera placement varies
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The LookDeep Virtual Care Platform

How we monitor each patient 24/7
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Computer Vision Pipeline
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Example output data

Real-time pipeline

Objects, masks, motion, state changes

Time granularities (s, m, h)

9



Example of our frame-level labels
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Data lake (one of several)

40K+ frames at time of publication

Labeled metadata (e.g. “bad image”, “truncated”) used to curate training data

Labeled image



Data labeling for ongoing performance management
30K hours per month (100K+ / mo by 2025)

FiftyOne 
management

● Test set - every 4th week 
● Compare old vs new models

Offline evaluation

All labeling is blurred
(final image is face blurred)

Image labeling
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How we use our labels



Frame-level analysis - object detection, classification
“All” objects, over time

Detection and classification metrics
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AI Inference

YOLOv4 (baseline) 0.98 0.41 n/a 0.28

Model v5 (2024-Q2) 0.96 0.91 0.98 0.92



Model development over time

Re-training models with more data, use most recent test set

Improvement with more targeted data (e.g. patient standing at night)
13

“All” objects, over time



Example of our trend-level data
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Time segment labels

● Evaluate consistency of signal over time

● Separate logical algorithms from core CV

● Requires video

Time segment predictions



Trend-level analysis - “patient is alone”

average logistic regression/manual accuracy 
- 0.82 ± 0.15 across all times

Time segment predictions Compare against GT trends
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Model v3, 10 patients



Manuscript contributions

● AI-driven patient monitoring system

● Multi-year data collection

● Model training and evaluation process

○ Object detection, role/state classification

○ “Patient alone” trends

● Anonymized dataset of hourly trends ->
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Public dataset

Continuous patient monitoring with AI: 
real-time analysis of video in hospital care settings 
(Front. Imaging, 09 March 2025)

https://lookdeep.vercel.app/


Lessons learned - evolving data coverage

Datasets timeline

Demographic information

● More data over time is a good thing

● Have a consistent test set (ours is now 10k+)

● Have a tight, continuous integration

● Metadata enables audits

● Understand what is there

● Anticipate biases
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Lesson learned - generalizing across camera conditions

  +0.04 Δ f1-score 
object detection 

average error of 1–2 min per hour

Variations in camera placement

Face-blurred vs raw images Downstream stability
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 - live -> unblurred
 - label -> full blur
 - train -> face blur

Shift data collection for extra “ON” samples

IR on/off



Lessons learned - our stack of AI data tools

GCP - data storage

Rerun - physical data viewer

Custom tools - 3d renderCVAT - labeling
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FiftyOne - image curation and analysis



Summary

● Applied computer vision, rigorous eval

● 11 hospitals, over 300 high-risk fall patients, 

more than 1,000 days of inference

● Open access to “hour-level” features from 2024

● Lessons learned: 

○ tag, tag, tag

○ expect imperfect conditions

○ adopt existing AI tools

Paper (v5) v7

We’re getting better…

20



Acknowledgements

Co-authors: Peter Rehani, Tyler Troy, Tiffany Wyatt, Michael Choma, Narinder Singh

Co-workers: Guram Kajaia, James Eitzman, Bill Mers, Mike O'Brien, Jan Marti, Laura Urbisci, Tom Hata

Reviewers: Aashish P., Jacob H., Kenny C., Tejaswy P., Quirine vE., Hina S., Nazreen P.M., Sandeep K.M.

AI-agent: GPT-4-turbo for refining manuscript text, to improve clarity and organization of the research

Study participants:

> The data used in this retrospective study was collected from patients admitted to one of eleven hospital 
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Thank you!

Questions?
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